Geologic Publications for Mount Rainier
Debris-flow monitoring on volcanoes via a novel usage of a laser rangefinder
[
back to previous page
]
Author(s):
Alexandra M. Iezzi,
Emily Bryant,
Weston A. Thelen,
Craig Gabrielson,
Seth C. Moran,
Matthew R. Patrick,
E F. Younger,
Maciej K. Obryk
Category: PUBLICATION
Document Type:
Publisher: Journal of Applied Volcanology
Published Year: 2024
Volume: 13
Number: 8
Pages: 11
DOI Identifier: 10.1186/s13617-024-00146-9
ISBN Identifier:
Keywords: Debris flow monitoring Lahar detection Laser rangefinder Volcano monitoring
Abstract:
Mount Rainier has had at least 11 large lahars over the last 6,000 years, including one occurring without evidence of eruptive activity. This prompted the creation of a lahar detection system that uses a combination of seismic, infrasound, and tripwires. We test a laser rangefinder placed on a river channel bank for detecting and confirming mass movements flowing past a station as an alternative to the physical tripwires. After testing the device at an experimental debris-flow flume, the laser rangefinder successfully captured a small debris flow on Mount Rainier in 2023, confirming its effectiveness as a lahar detection and monitoring tool. Over the 2-month deployment at Mount Rainier, we find that spurious recordings in the laser rangefinder data (noise) tend to correlate with high humidity, and that periods of noise do not correlate with increased co-located seismic amplitude. Therefore, the impact of the noise on future alarms can be mitigated by coupling a laser rangefinder alarm with that of independent datasets.
View Report:
View Report [External Link]
Suggested Citations:
In Text Citation:
Iezzi and others (2024) or (Iezzi et al., 2024)
References Citation:
Iezzi, A.M., E. Bryant, W.A. Thelen, C. Gabrielson, S.C. Moran, M.R. Patrick, E.F. Younger, and M.K. Obryk, 2024, Debris-flow monitoring on volcanoes via a novel usage of a laser rangefinder: Journal of Applied Volcanology, Vol. 13, No. 8, 11 p., doi:
10.1186/s13617-024-00146-9.