MOUNT RAINIER
GEOLOGY & WEATHER
Hello guest! [ Log In ]
View Geologic Publication Information

Geologic Publications for Mount Rainier

Glacier fluctuation chronology since the latest Pleistocene at Mount Rainier, Washington, USA

[ back to previous page ]

Author(s): Mary A. Samolczyk, Gerald D. Osborn, Brian Menounos, Douglas H. Clark, P T. Davis, John J. Clague, Johannes Koch

Category: PUBLICATION
Document Type:
Publisher: Quaternary Research
Published Year: 2024
Volume:
Number:
Pages:
DOI Identifier: 10.1017/qua.2023.63
ISBN Identifier:
Keywords: Glacier fluctuations Lateral-moraine stratigraphy Holocene Mount Rainier Environmental reconstruction Little Ice Age

Abstract:
Large stratovolcanoes in the Cascade Range have high equilibrium-line altitudes that support glaciers whose Holocene and latest Pleistocene advances are amenable to dating. Glacier advances produced datable stratigraphic sequences in lateral moraines, which complement dating of end moraines. New mapping of glacial deposits on Mount Rainier using LIDAR and field observations supports a single latest Pleistocene or early Holocene advance. Rainier R tephra overlies deposits from this advance and could be as old as >11.6 ka; the advance could be of Younger Dryas age. Radiocarbon ages on wood interbedded between tills in the lateral moraines of Nisqually, Carbon, and Emmons glaciers and the South Tahoma glacier forefield suggest glacier advances between 200 and 550 CE, correlative with the First Millennium Advance in western Canada, and during the Little Ice Age (LIA) beginning as early as 1300 CE.

These results resolve previous contradictory interpretations of Mount Rainier's glacial history and indicate that the original proposal of a single pre-Neoglacial cirque advance is correct, in contrast to a later interpretation of two advances of pre- and post-Younger Dryas age, respectively. Meanwhile, the occurrence of the pre-LIA Burroughs Mountain Advance, interpreted in previous work as occurring 3–2.5 ka, is questionable based on inherently ambiguous interpretations of tephra distribution.

View Report:
View Report [External Link]

Suggested Citations:
In Text Citation:
Samolczyk and others (2024) or (Samolczyk et al., 2024)

References Citation:
Samolczyk, M.A., G.D. Osborn, B. Menounos, D.H. Clark, P.T. Davis, J.J. Clague, and J. Koch, 2024, Glacier fluctuation chronology since the latest Pleistocene at Mount Rainier, Washington, USA: Quaternary Research, doi: 10.1017/qua.2023.63.